DOI:10.20047/j.issn1673-7210.2025.27.02
中图分类号:R259;|R542.2
马静, 蒋虎刚, 任春贞, 王新强, 李应东, 赵信科
| 【作者机构】 | 甘肃中医药大学中西医结合学院; 甘肃中医药大学附属医院心血管科 | 
| 【分 类 号】 | R259;R542.2 | 
| 【基 金】 | 国家自然科学基金资助项目(82360926)。 | 
心肌纤维化(myocardial fibrosis,MF)以心肌细胞外基质(extracellular matrix,ECM)蛋白过度沉积为特征,核心病理机制是心肌成纤维细胞(cardiac fibroblasts,CFs)活化转化为肌成纤维细胞(myofibroblasts,MFs),常见于心肌梗死等心血管疾病[1]。在炎症等刺激下,CFs可分化为α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)高表达的MFs,转化生长因子-β1(transforming growth factor-β1,TGF-β1)驱动此过程并诱导炎症细胞因子分泌,NOD样受体热蛋白结构域相关蛋白3(NOD-likereceptorpyrindomaincontaining3,NLRP3)炎症小体也参与其中[2]。
肠道微生物群作为人体“第二基因组”,其代谢产物可影响远端器官功能。厚壁菌门与拟杆菌门比例(firmicutes/bacteroidetes,F/B)是评估肠道生态的重要指标。研究证实,肠道菌群及其代谢物与心血管疾病密切相关:三甲胺-N-氧化物(trimethylamine N-oxide,TMAO)可预测心肌梗死风险[3];脂多糖(lipopolysaccharide,LPS)通过激活NLRP3促进心房颤动[4];短链脂肪酸(short-chain fatty acids,SCFA)则可改善梗死后心脏修复[5]。
中医“心与小肠相表里”理论认为心与小肠相互关联。现代研究发现中药可调节肠道代谢防治心脏疾病,如黄芪甲苷可改善心肌梗死大鼠肠道菌群多样性,减轻炎症与氧化应激损伤[6];四逆汤能调节慢性心力衰竭大鼠肠道菌群结构并改善心功能[7]。“肠道-免疫-心脏轴”已成为研究热点。本文将系统探讨肠道菌群及其代谢产物在MF中的作用机制,为MF防治提供新策略。
《灵枢·本输》载“心合小肠,小肠者,受盛之腑”,奠定了“心与小肠相表里”的理论基础。心为“五脏六腑之大主”,主血脉而濡养脏腑,其经脉络属小肠;小肠为受盛之腑,主化物泌浊以充养心脉,二者通过手少阴心经与手太阳小肠经相互络属,形成“阴阳相通,表里相应”的生理联系。从经络循行看,心经“下膈络小肠”,小肠经“入缺盆,络心”,构成表里经脉网络,为临床互治提供依据。
在生理上,心阳温煦小肠以维持其化物功能,小肠泌别清浊之精微经脾运化充养心脉,形成“心主血-小肠化浊-血脉充盈”的协同机制。病理上,二者相互影响:心火可下移小肠致小便黄赤、口舌生疮;心阳亏虚则小肠失于温煦,见小便少、大便燥。综上,该理论涵盖经络互联、生理互用、病理互传三层内涵,为心肠疾病辨治提供整体观指导。
人体肠道菌群是复杂的共生生态系统,对宿主生理至关重要。近年研究发现,菌群及其代谢物是心血管疾病患者死亡率增加和预后不良的重要因素[8]。如冠状动脉疾病患者中,肠道菌群相互作用失衡参与疾病发生,心肌梗死后菌群易位可诱发炎症,加重心肌细胞凋亡[9]。在冠状动脉疾病患者的常规治疗中,肠道菌群也可诱导高血小板反应,导致抗凝药物治疗发生延迟反应[10]。此外,菌群还与高血压、心力衰竭等相关,其代谢物既有促发疾病的作用,也有心脏保护效应。肠道菌群与心血管健康相互影响,探究二者关联机制是未来防治心血管疾病的关键。
肠道菌群的改变通常伴随着心血管疾病。特定肠道菌群通过损伤氨基酸代谢和脂质代谢影响MF,维持肠道微生物稳态,干预肠道菌群代谢能够抑制MF的发生。SCFA作为肠道细菌发酵膳食纤维的代谢产物,包含乙酸盐、丙酸盐和丁酸盐,在MF进程中发挥关键作用。其中丁酸盐主要抑制组蛋白脱乙酰酶1和3,降低α-SMA表达,减少心肌细胞外基质沉积,还可抑制NLRP3/Caspase-1焦亡通路,减少CFs向MFs分化[11]。乙酸盐通过G偶联蛋白受体41(G protein-coupled receptor 41,GPR41)和GPR43受体抑制TGF-β1-SMAD2信号通路,从而减少MFs增殖和胶原蛋白形成[12]。丙酸盐则通过抑制JNK/P38/NFκB通路磷酸化,减少巨噬细胞极化和促炎性细胞因子来缓解心肌梗死后慢性心脏重塑[13]。由此可见,维持肠道菌群稳态对调控MF意义重大。
TMAO是研究较多的促MF肠道菌群代谢物,与慢性心血管疾病密切相关。其生成源于肠道菌群对胆碱、磷脂酰胆碱的代谢,菌群失衡时,饮食胆碱经细菌转化为三甲胺,再由肝脏黄素单加氧酶3代谢为TMAO。动物实验表明,胆碱或TMAO干预可促进MF进展[14]。研究表明,TMAO浓度升高与MF程度加重、NLRP3炎症小体激活及活性氧(reactive oxygen species,ROS)生成增加显著相关,提示其可通过增强炎症反应与氧化应激参与MF病理进程[15]。从作用机制来看,TMAO既能上调TGF-β1 表达并激活SMAD2信号,促进CFs向MFs转化,又能通过抑制Smad泛素化调节因子2蛋白表达,增强成纤维细胞迁移能力与α-SMA表达,加速细胞外基质沉积[16]。临床研究发现,心脏术后心房颤动患者心肌组织中TMAO与TGF-β 水平升高,且纤维化程度更严重[17]。此外,HIV感染者体内TMAO水平也与弥漫性MF呈正相关,提示其可能作为早期结构性心脏病的标志物[18]。TMAO还可能通过铁死亡途径加剧心肌缺血条件下的心肌细胞损伤,从而增加MF的风险[19]。综上,TMAO可能通过多通路协同促进MF发展,但其在不同病理背景下的具体调控网络仍需深入探究。
在心房颤动引发的心房纤维化进程中,钙蛋白酶、血小板衍生生长因子等是关键介质,成纤维细胞增殖分化和ECM沉积响应于心房伸展、炎症和氧化应激等损伤。而肠道微生物衍生的苯乙酰谷氨酰胺可诱导心房肌细胞ROS生成,破坏细胞稳态,参与纤维化[20]。
心力衰竭可引发肠黏膜水肿或缺血,致使肠道通透性增加,促使细菌及其代谢毒素入血。由此引发的肠道菌群与代谢物变化,会干扰机体炎症反应、免疫功能、新陈代谢及心肌修复进程。炎症反应激活和炎症因子的富集导致肠道屏障减弱和血液LPS浓度升高。LPS作为Toll样受体4(Toll-like receptor 4,TLR4)的激动剂,激活病原体相关的分子模式反应,促进炎症因子表达分泌;同样,LPS可通过诱导氧化应激失衡导致MF[21]。
正常生理状态下心肌以脂肪酸为主要供能底物,而在MF进展中,心肌能量代谢模式会适应性地从脂肪酸代谢转向葡萄糖代谢,以减少耗氧量并维持ATP生成。缺氧诱导因子-1(hypoxia inducible factor-1,HIF-1)作为糖脂代谢关键调控因子,在心肌肥大时因心肌缺氧被激活,通过调节过氧化物酶体增殖物激活受体α(peroxisome proliferators-activated receptors α,PPARα)信号通路推动代谢模式转变,优化心脏能量代谢[22]。研究发现,肠道菌群可调控宿主能量代谢,促进氨基酸等必需分子代谢。如在异丙肾上腺素(isoproterenol,ISO)诱导的心肌损伤大鼠模型中,肠道菌群多样性降低,氨基酸代谢与核苷酸合成功能受损,伴随HIF-1α 表达上调及PPARα 表达下调,引发心肌能量代谢紊乱并加剧MF[23]。而生脉饮通过调节肠道菌群,抑制HIF-1α/PPARα 信号通路,有效改善了上述代谢异常。
氨基酸代谢不仅维持心肌能量平衡,部分氨基酸如色氨酸、精氨酸代谢物与心肌损伤和不良重塑有关。保元汤可调节拟杆菌门与厚壁菌门的比例,降低色氨酸和精氨酸代谢物水平,进而抑制氧化应激反应及MAPK、NF-κB信号通路激活,减轻ISO诱导的心肌肥大和细胞外基质沉积[24]。葛根提取物通过恢复肠道菌群平衡、调节精氨酸代谢,改善了心肌梗死后的心脏重塑[25]。黄芪甲苷则通过调控肠道菌群影响苯丙氨酸代谢,在ISO诱导的MF模型中发挥抗纤维化作用[26]。然而,目前对于特定菌群与氨基酸代谢的具体作用机制仍需深入探究。
肠道菌群异常与线粒体功能障碍存在紧密关联。细菌效应蛋白可通过线粒体外膜转位酶进入线粒体,引发线粒体功能异常,包括线粒体活性氧诱导的氧化应激、线粒体DNA突变和释放及线粒体动力学失衡,进一步导致心肌细胞损伤和MF。人参定志汤通过调节肠道菌群改善线粒体功能与结构,减轻氧化应激损伤,从而保护心肌细胞[27]。黄酒多酚可降低变形菌丰度、增加有益菌数量,减少促炎因子释放与线粒体损伤,进而防止阿霉素诱导的MF[28]。人参皂苷Rb1通过双特异性磷酸酶1(dualspecificityphosphatase-1,DUSP-1)调节肠道菌群组成,同时通过DUSP-1-跨膜Bax抑制剂-电压依赖性阴离子通道1轴维持线粒体动态平衡,触发线粒体自噬,抑制心肌细胞焦亡,缓解心力衰竭中的MF[29]。具体中药单体干预机制见表1。
表1 中药单体调控肠道菌群干预MF机制
 
    注 MF:心肌纤维化;LAD:左前降支;MI:心肌梗死;ISO:异丙肾上腺素;DOX:阿霉素;TAC:横向主动脉缩窄;DUSP-1:双特异性磷酸酶1;TMBIM-6:跨膜Bax抑制剂;VDAC1:电压依赖性阴离子通道1;F/B:厚壁菌门与拟杆菌门比例;TNF-α:肿瘤坏死因子-α;IL:白细胞介素;T2DM:2型糖尿病;DIC:药物性心肌病;AngⅡ:血管紧张素Ⅱ;Nrf2:核因子E2相关因子2;SIRT1:沉默信息调节因子1;Col1:Ⅰ型胶原蛋白;CTGF:结缔组织生长因子。
综上所述,肠道菌群可通过影响心肌能量代谢参与MF病理过程,恢复肠道菌群平衡有助于改善心肌能量利用。但现有研究尚未对优势菌群进行定向筛选,其具体作用机制仍需进一步明确。
肠道屏障破坏导致细菌和内毒素转移到体循环中诱发炎症反应被认为是心肌损伤和MF发生的关键机制[36]。绞股蓝苷可通过重塑菌群减轻ISO诱导的心肌重塑[30]。肠道菌群失调不仅破坏了肠道屏障,导致细菌及其代谢物入血诱导炎症反应,同时减少了抗炎介质SCFA的生成,导致肠道屏障的损伤进一步加重。LPS是内毒素血症的关键介质,可通过TLR4/MyD88或TLR4/NF-κB信号通路激活炎症反应,参与心肌损伤和MF[37]。四妙勇安汤、鹿红颗粒等可通过调节菌群结构、降低LPS及TMAO水平,抑制TLR4/NF-κB炎症通路[38-39]。同样,补肾活血汤、补阳还五汤及小青龙汤也被证实能够调节肠道菌群和代谢物向更有利的方向发展,改善肠道屏障功能,延缓心肌细胞肥大和纤维化,改善心功能[40-42]。
上述研究表明,肠道屏障功能受损会导致肠道菌群代谢产物如LPS及TMAO入血,诱发机体炎症反应,加剧心肌损伤及MF。但在部分研究中缺乏对肠道组织病理检测,且在中药复方选择中未明确选方依据。中药复方成分复杂,后续可进一步精确其主要有效成分对肠道组织的修复作用。中药复方的干预机制见表2。
表2 中药复方调控肠道菌群干预MF机制
 
    注 MF:心肌纤维化;ISO:异丙肾上腺素;PPAR:过氧化物酶体增殖物激活受体;PKA:蛋白激酶A;F/B:厚壁菌门与拟杆菌门比例;SCFA:短链脂肪酸;MAPK:丝裂原活化蛋白激酶;TAC:横向主动脉缩窄;TMBIM6:跨膜Bax抑制剂;LAD:左前降支;I/R:缺血再灌注;LPS:脂多糖;TNF-α:肿瘤坏死因子-α;IL:白细胞介素;TMAO:三甲胺-N-氧化物;AMI:急性心肌梗死;p38MAPK:p38丝裂原活化蛋白激酶;p65NF-κB:p65核因子-κB;HFpEF:射血分数保留的心力衰竭;MCP-1:单核细胞趋化蛋白-1。
现有研究表明,心肌细胞铁死亡可诱发心肌重塑[43]。铁死亡由脂质过氧化和ROS水平升高引发,受ROS防御与铁代谢调控。Nrf2作为关键调控因子,在缺血刺激下核转位调节铁死亡相关基因,影响细胞修复。同时,心肌细胞内Fe2+积累与脂质结合促进ROS形成,引发单链DNA断裂或激活心脏肥大相关蛋白,最终导致心脏肥大[44]。死亡的心肌细胞还会激活局部免疫反应,促使MFs活化分泌胶原蛋白,引发MF[45]。因此,铁可重塑肠道菌群组成与屏障功能,过量铁增加致病菌定植[46]。红景天苷、芍药苷、大黄素等中药成分可通过调节肠道菌群,降低铁超载、激活Nrf2通路,抑制铁死亡,改善心肌损伤与MF[31-33]。这些研究初步揭示了肠道菌群与铁死亡之间的关联,但具体作用机制仍不明确,未来需深入探究菌群代谢物与铁死亡调控的分子通路。
除上述研究外,Tian等[34]认为黄芪甲苷调节肠道菌群,通过SIRT1/NLRP3通路抑制细胞焦亡,改善了阿霉素诱导的心肌损伤和心室重塑,但肠道菌群与焦亡通路间的联系尚未阐明。大黄素可上调有益菌丰度,抑制组蛋白脱乙酰酶及纤维化基因胶原1和结缔组织生长因子表达,缓解高血压心脏重塑[35]。
“心与小肠相表里”理论提出了心脏与肠道代谢病理及生理的联系,在此指导下的辨证治疗为心脏和肠道的治疗提供了新的思路。但是二者之间的具体联系始终未能明确。依托现有研究技术,肠道菌群的发现及其介导的免疫反应揭示了心脏与肠道代谢之间的作用机制。肠道菌群成为“心与小肠相表里”理论的物质基础。深入研究发现,肠道菌群组成及其代谢物参与MF的病理过程,影响了心功能,通过中药干预肠道菌群能够防治MF,改善心功能。并且在治疗过程中发现,中药能够维持肠道菌群稳态、保护肠道屏障、抑制免疫反应及促进心功能恢复,为中药现代化提供了参考,并丰富了“心与小肠相表里”的理论内涵。
通过查阅相关研究发现,目前中医药调控肠道菌群的研究存在一定不足:①研究结果表明中药调节肠道菌群结构,缓解了MF,但两者之间的具体机制并未明确,特别是优势菌群的定向筛选未能进行,未来可通过粪菌移植及菌群抑制实验加以验证。②中药改善肠道屏障,减少了TAMO及LPS转移入血,但部分实验缺乏对肠道组织的病理检测。③中药复方的干预未制备相应的证型模型,且缺乏临床实践验证,需要将基础研究与临床观察相互结合,以提供更广泛的用药选择和诊疗思路,从而有效治疗MF。
利益冲突说明:本文所有作者均声明不存在利益冲突。
[1] ZHAO Q,SHAO T,HUANG S,et al.The insulin-like growth factor binding protein -microfibrillar associated protein -sterol regulatory element binding protein axis regulates fibroblast-myofibroblast transition and cardiac fibrosis[J].Br J Pharmacol,2024,181(15):2492-2508.
[2] MORADI A,ASLANI M R,MIRSHEKARI J H,et al.Protective effects of 4 -methylumbelliferone on myocardial ischemia/reperfusion injury in rats through inhibition of oxidative stress and downregulation of TLR4/NF-kappaB/NLRP3 signaling pathway [J].Naunyn Schmiedebergs Arch Pharmacol,2024,397(7):5015-5027.
[3] MARTINS D,SILVA C,FERREIRA A C,et al.Unravelling the Gut Microbiome Role in Cardiovascular Disease:A Systematic Review and a Meta-Analysis[J].Biomolecules,2024,14(6):731.
[4] FANG C,ZUO K,LIU Z,et al.Disordered GPR43/NLRP3 expression in peripheral leukocytes of patients with atrial fibrillation is associated with intestinal short chain fatty acids levels[J].Eur J Med Res,2024,29(1):233.
[5] MOLUDI J,SAIEDI S,EBRAHIMI B,et al.Probiotics Supplementation on Cardiac Remodeling Following Myocardial Infarction:a Single-Center Double-Blind Clinical Study[J].J Cardiovasc Transl Res,2021,14(2):299-307.
[6] 闫俊元,钟鑫勤,赵玉翠,等.基于代谢组学和肠道菌群研究黄芪甲苷对心肌梗死大鼠的作用[J].中草药,2024,55(6):1988-2001.
[7] 张曦宁,董振华,赵震宇,等.基于肠道菌群探讨四逆汤治疗慢性心力衰竭心阳虚证的作用机制[J].中药药理与临床,2024,40(1):8-16.
[8] WANG Y,XIE Y,MAHARA G,et al.Intestinal microbiota and metabolome perturbations in ischemic and idiopathic dilated cardiomyopathy[J].J Transl Med,2024,22(1):89.
[9] AN K,JIA Y,XIE B,et al.Alterations in the gut mycobiome with coronary artery disease severity[J].EBioMedicine,2024,103:105137.
[10] ZHANG X,ZHANG X,TONG F,et al.Gut microbiota induces high platelet response in patients with ST segment elevation myocardial infarction after ticagrelor treatment[J].Elife,2022,11.
[11] DONG T,HUANG D,JIN Z.Mechanism of sodium butyrate,a metabolite of gut microbiota,regulating cardiac fibroblast transdifferentiation via the NLRP3/Caspase-1 pyroptosis pathway[J].J Cardiothorac Surg,2024,19(1):208.
[12] LIN C J,CHENG Y C,CHEN H C,et al.Commensal gut microbiota-derived acetate and propionate enhance heart adaptation in response to cardiac pressure overload in mice[J].Theranostics,2022,12(17):7319-7334.
[13] ZHOU M M,LI D W,XU L,et al.Propionate alleviated postinfarction cardiac dysfunction by macrophage polarization in a rat model[J].Int Immunopharmacol,2023,115:109618.
[14] LI Z,WU Z,YAN J,et al.Gut microbe -derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis[J].Lab Invest,2019,99(3):346-357.
[15] LI X,GENG J,ZHAO J,et al.Trimethylamine N-Oxide Exacerbates Cardiac Fibrosis via Activating the NLRP3 Inflammasome[J].Front Physiol,2019,10:866.
[16] YANG W,ZHANG S,ZHU J,et al.Gut microbe-derived metabolite trimethylamine N-oxide accelerates fibroblastmyofibroblast differentiation and induces cardiac fibrosis[J].J Mol Cell Cardiol,2019,134:119-130.
[17] NENNA A,LAUDISIO A,TAFFON C,et al.Intestinal Microbiota and Derived Metabolites in Myocardial Fibrosis and Postoperative Atrial Fibrillation[J].Int J Mol Sci,2024,25(11).
[18] COLACO N A,WANG T S,MA Y,et al.Transmethylamine-N-Oxide Is Associated With Diffuse Cardiac Fibrosis in People Living With HIV [J].J Am Heart Assoc,2021,10(16):e020499.
[19] WANG L,WANG Y,XU H,et al.Effect of dapagliflozin on ferroptosis through the gut microbiota metabolite TMAO during myocardial ischemia-reperfusion injury in diabetes mellitus rats[J].Sci Rep,2024,14(1):13851.
[20] FANG C,ZUO K,JIAO K,et al.PAGln,an Atrial Fibrillation-Linked Gut Microbial Metabolite,Acts as a Promoter of Atrial Myocyte Injury [J].Biomolecules,2022,12(8):1120.
[21] ASGHARZADEH F,BARGI R,HOSSEINI M,et al.Cardiac and renal fibrosis and oxidative stress balance in lipopolysaccharide-induced inflammation in male rats [J].ARYA Atheroscler,2018,14(2):71-77.
[22] HUANG X,ZHAO L,PENG R.Hypoxia-Inducible Factor 1 andMitochondria:AnIntimateConnection[J].Biomolecules,2022,13(1):50.
[23] MING S,KAN M,LIU L,et al.Protective Effect of Shengmaiyin in Myocardial Hypertrophy-Induced Rats:A Genomic Analysis by 16S rDNA [J].Evid Based Complement Alternat Med,2022,2022:3188292.
[24] DU Z,WANG J,LU Y,et al.The cardiac protection of Baoyuan decoction via gut -heart axis metabolic pathway [J].Phytomedicine,2020,79:153322.
[25] YI B,ZHAO Y,YAN H,et al.Targeted arginine metabolomics combined with metagenomics revealed the potential mechanism of Pueraria lobata extract in treating myocardial infarction[J].J Chromatogr A,2024,1719:464732.
[26] DU X Q,SHI L P,CHEN Z W,et al.Astragaloside ⅣAmeliorates Isoprenaline-Induced Cardiac Fibrosis in Mice via Modulating Gut Microbiota and Fecal Metabolites [J].Front Cell Infect Microbiol,2022,12:836150.
[27] WANG J,CHEN P,CAO Q,et al.Traditional Chinese Medicine Ginseng Dingzhi Decoction Ameliorates Myocardial Fibrosis and High Glucose-Induced Cardiomyocyte Injury by Regulating Intestinal Flora and Mitochondrial Dysfunction[J].Oxid Med Cell Longev,2022,2022:9205908.
[28] LIN H,MENG L,SUN Z,et al.Yellow Wine Polyphenolic Compound Protects Against Doxorubicin-Induced Cardiotoxicity by Modulating the Composition and Metabolic Function of the Gut Microbiota [J].Circ Heart Fail,2021,14(10):e008220.
[29] PU X,ZHANG Q,LIU J,et al.Ginsenoside Rb1 ameliorates heart failure through DUSP-1-TMBIM-6-mediated mitochondrial quality control and gut flora interactions[J].Phytomedicine,2024,132:155880.
[30] ZHANG X,ZHAO Y,ZHAO X,et al.Anti-inflammatory,cardioprotective effect of gypenoside against isoproterenolinduced cardiac remodeling in rats via alteration of inflammation and gut microbiota[J].Inflammopharmacology,2023,31(5):2731-2750.
[31] SHI J,ZHAO Q,HAO D D,et al.Gut microbiota profiling revealed the regulating effects of salidroside on iron metabolism in diabetic mice [J].Front Endocrinol(Lausanne),2022,13:1014577.
[32] WU H,ZHANG P,ZHOU J,et al.Paeoniflorin confers ferroptosis resistance by regulating the gut microbiota and its metabolites in diabetic cardiomyopathy[J].Am J Physiol Cell Physiol,2024,326(3):C724-C741.
[33] HU S,ZHOU J,HAO J,et al.Emodin ameliorates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis through the remodeling of gut microbiota composition [J].Am J Physiol Cell Physiol,2024,326(1):C161-C176.
[34] TIAN W,ZHANG P,YANG L,et al.Astragaloside IV Alleviates Doxorubicin-Induced Cardiotoxicity by Inhibiting Cardiomyocyte Pyroptosis through the SIRT1/NLRP3 Pathway[J].Am J Chin Med,2024,52(2):453-469.
[35] EVANS L,PRICE T,HUBERT N,et al.Emodin Inhibited Pathological Cardiac Hypertrophy in Response to Angiotensin-Induced Hypertension and Altered the Gut Microbiome[J].Biomolecules,2023,13(9):1-15.
[36] ZHAO J,ZHANG Q,CHENG W,et al.Heart-gut microbiota communication determines the severity of cardiac injury after myocardial ischaemia/reperfusion [J].Cardiovasc Res,2023,119(6):1390-1402.
[37] FISHER J R,CHROUST Z D,ONYONI F,et al.Pattern Recognition Receptors in Innate Immunity to Obligate Intracellular Bacteria[J].Zoonoses(Burlingt),2021,1(1):10.
[38] CUI Y,ZHANG F,XU W,et al.Effects of Si-Miao-Yong-An decoction on myocardial I/R rats by regulating gut microbiota to inhibit LPS-induced TLR4/NF-κB signaling pathway[J].BMC Complement Med Ther,2023,23(1):180.
[39] YANG T,QU H,SONG X,et al.Luhong Granules Prevent Ventricular Remodelling after Myocardial Infarction by Reducing the Metabolites TMAO and LPS of the Intestinal Flora [J].Evid Based Complement Alternat Med,2019,2019:8937427.
[40] XU R,BI Y,HE X,et al.Kidney-tonifying blood-activating decoction delays ventricular remodeling in rats with chronic heart failure by regulating gut microbiota and metabolites and p38 mitogen-activated protein kinase/p65 nuclear factor kappa-B/aquaporin-4 signaling pathway [J].J Ethnopharmacol,2024,330:118110.
[41] WENG J Q,LI J B,YUAN M F,et al.Effects of Buyang Huanwu Decoction on Intestinal Barrier,Intestinal Flora,and Trimethylamine Oxide in Rats with Heart Failure [J].Chin J Integr Med,2023,29(2):155-161.
[42] ZHOU G F,JIANG Y H,MA D F,et al.Xiao-Qing-Long Tang Prevents Cardiomyocyte Hypertrophy,Fibrosis,and the Development of Heart Failure with Preserved Ejection Faction in Rats by Modulating the Composition of the Gut Microbiota[J].Biomed Res Int,2019,2019:9637479.
[43] CHENG P,WANG X,LIU Q,et al.LuQi formula attenuates Cardiomyocyte ferroptosis via activating Nrf2/GPX4 signalingaxisinheartfailure[J].Phytomedicine,2024,125:155357.
[44] WANG J,DENG B,LIU Q,et al.Pyroptosis and ferroptosis induced by mixed lineage kinase 3(MLK3)signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload[J].Cell Death Dis,2020,11(7):574.
[45] ZHANG Y,XIN L,XIANG M,et al.The molecular mechanisms of ferroptosis and its role in cardiovascular disease[J].Biomed Pharmacother,2022,145:112423.
[46] BOTTA A,BARRA N G,LAM N H,et al.Iron Reshapes the GutMicrobiomeand Host Metabolism[J].JLipid Atheroscler,2021,10(2):160-183.
Discussion on the research progress of traditional Chinese medicine in regulating intestinal flora metabolism for the prevention and treatment of Myocardial fibrosis based on “the heart and small intestine are in the exterior and interior”
 
    X